Back to home page

EIC code displayed by LXR

 
 

    


File indexing completed on 2025-07-11 07:53:31

0001 // SPDX-License-Identifier: LGPL-3.0-or-later
0002 // Copyright (C) 2022 Chao Peng, Wouter Deconinck, Sylvester Joosten, Barak Schmookler, David Lawrence
0003 
0004 // A general digitization for CalorimeterHit from simulation
0005 // 1. Smear energy deposit with a/sqrt(E/GeV) + b + c/E or a/sqrt(E/GeV) (relative value)
0006 // 2. Digitize the energy with dynamic ADC range and add pedestal (mean +- sigma)
0007 // 3. Time conversion with smearing resolution (absolute value)
0008 // 4. Signal is summed if the SumFields are provided
0009 //
0010 // Author: Chao Peng
0011 // Date: 06/02/2021
0012 
0013 #include "CalorimeterHitDigi.h"
0014 
0015 #include <DD4hep/Detector.h>
0016 #include <DD4hep/IDDescriptor.h>
0017 #include <DD4hep/Readout.h>
0018 #include <DD4hep/config.h>
0019 #include <DDSegmentation/BitFieldCoder.h>
0020 #include <Evaluator/DD4hepUnits.h>
0021 #include <algorithms/service.h>
0022 #include <edm4eic/MCRecoCalorimeterHitAssociationCollection.h>
0023 #include <edm4hep/CaloHitContributionCollection.h>
0024 #include <fmt/core.h>
0025 #include <podio/RelationRange.h>
0026 #include <algorithm>
0027 #include <cmath>
0028 #include <cstddef>
0029 #include <gsl/pointers>
0030 #include <limits>
0031 #include <map>
0032 #include <stdexcept>
0033 #include <string>
0034 #include <unordered_map>
0035 #include <utility>
0036 #include <vector>
0037 
0038 #include "algorithms/calorimetry/CalorimeterHitDigiConfig.h"
0039 #include "services/evaluator/EvaluatorSvc.h"
0040 
0041 using namespace dd4hep;
0042 
0043 namespace eicrecon {
0044 
0045 //
0046 // TODO:
0047 // - Array type configuration parameters are not yet supported in JANA (needs to be added)
0048 // - Random number service needs to bew resolved (on global scale)
0049 // - It is possible standard running of this with Gaudi relied on a number of parameters
0050 //   being set in the config. If that is the case, they should be moved into the default
0051 //   values here. This needs to be confirmed.
0052 
0053 void CalorimeterHitDigi::init() {
0054 
0055   // Gaudi implements a random number generator service. It is not clear to me how this
0056   // can work. There are multiple race conditions that occur in parallel event processing:
0057   // 1. The exact same events processed by a given thread in one invocation will not
0058   //    necessarily be the combination of events any thread sees in a subsequent
0059   //    invocation. Thus, you can't rely on thread_local storage.
0060   // 2. Its possible for the factory execution order to be modified by the presence of
0061   //    a processor (e.g. monitoring plugin). This is not as serious since changing the
0062   //    command line should cause one not to expect reproducibility. Still, one may
0063   //    expect the inclusion of an "observer" plugin not to have such side affects.
0064   //
0065   // More information will be needed. In the meantime, we implement a local random number
0066   // generator. Ideally, this would be seeded with the run number+event number, but for
0067   // now, just use default values defined in header file.
0068 
0069   // set energy resolution numbers
0070   if (m_cfg.eRes.empty()) {
0071     m_cfg.eRes.resize(3);
0072   } else if (m_cfg.eRes.size() != 3) {
0073     error("Invalid m_cfg.eRes.size()");
0074     throw std::runtime_error("Invalid m_cfg.eRes.size()");
0075   }
0076 
0077   // using juggler internal units (GeV, mm, radian, ns)
0078   tRes    = m_cfg.tRes / dd4hep::ns;
0079   stepTDC = dd4hep::ns / m_cfg.resolutionTDC;
0080 
0081   // sanity checks
0082   if (m_cfg.readout.empty()) {
0083     error("readoutClass is not provided, it is needed to know the fields in readout ids");
0084     throw std::runtime_error("readoutClass is not provided");
0085   }
0086 
0087   // get decoders
0088   try {
0089     id_spec = m_geo.detector()->readout(m_cfg.readout).idSpec();
0090   } catch (...) {
0091     // Can not be more verbose. In JANA2, this will be attempted at each event, which
0092     // pollutes output for geometries that are less than complete.
0093     // We could save an exception and throw it from process.
0094     debug("Failed to load ID decoder for {}", m_cfg.readout);
0095     throw std::runtime_error(fmt::format("Failed to load ID decoder for {}", m_cfg.readout));
0096   }
0097 
0098   decltype(id_mask) id_inverse_mask = 0;
0099   // all these are for signal sum at digitization level
0100   if (!m_cfg.fields.empty()) {
0101     for (auto& field : m_cfg.fields) {
0102       id_inverse_mask |= id_spec.field(field)->mask();
0103     }
0104     debug("ID mask in {:s}: {:#064b}", m_cfg.readout, id_mask);
0105   }
0106   id_mask = ~id_inverse_mask;
0107 
0108   std::function hit_to_map = [this](const edm4hep::SimCalorimeterHit& h) {
0109     std::unordered_map<std::string, double> params;
0110     for (const auto& p : id_spec.fields()) {
0111       const std::string& name                  = p.first;
0112       const dd4hep::IDDescriptor::Field* field = p.second;
0113       params.emplace(name, field->value(h.getCellID()));
0114       trace("{} = {}", name, field->value(h.getCellID()));
0115     }
0116     return params;
0117   };
0118 
0119   auto& serviceSvc = algorithms::ServiceSvc::instance();
0120   corrMeanScale =
0121       serviceSvc.service<EvaluatorSvc>("EvaluatorSvc")->compile(m_cfg.corrMeanScale, hit_to_map);
0122 
0123   std::map<std::string, readout_enum> readoutTypes{{"simple", kSimpleReadout},
0124                                                    {"poisson_photon", kPoissonPhotonReadout},
0125                                                    {"sipm", kSipmReadout}};
0126   if (not readoutTypes.count(m_cfg.readoutType)) {
0127     error("Invalid readoutType \"{}\"", m_cfg.readoutType);
0128     throw std::runtime_error(fmt::format("Invalid readoutType \"{}\"", m_cfg.readoutType));
0129   }
0130   readoutType = readoutTypes.at(m_cfg.readoutType);
0131 }
0132 
0133 void CalorimeterHitDigi::process(const CalorimeterHitDigi::Input& input,
0134                                  const CalorimeterHitDigi::Output& output) const {
0135 
0136   const auto [simhits]      = input;
0137   auto [rawhits, rawassocs] = output;
0138 
0139   // find the hits that belong to the same group (for merging)
0140   std::unordered_map<uint64_t, std::vector<std::size_t>> merge_map;
0141   std::size_t ix = 0;
0142   for (const auto& ahit : *simhits) {
0143     uint64_t hid = ahit.getCellID() & id_mask;
0144 
0145     trace("org cell ID in {:s}: {:#064b}", m_cfg.readout, ahit.getCellID());
0146     trace("new cell ID in {:s}: {:#064b}", m_cfg.readout, hid);
0147 
0148     merge_map[hid].push_back(ix);
0149 
0150     ix++;
0151   }
0152 
0153   // signal sum
0154   // NOTE: we take the cellID of the most energetic hit in this group so it is a real cellID from an MC hit
0155   for (const auto& [id, ixs] : merge_map) {
0156 
0157     // create hit and association in advance
0158     edm4hep::MutableRawCalorimeterHit rawhit;
0159     std::vector<edm4eic::MutableMCRecoCalorimeterHitAssociation> rawassocs_staging;
0160 
0161     double edep      = 0;
0162     double time      = std::numeric_limits<double>::max();
0163     double max_edep  = 0;
0164     auto leading_hit = (*simhits)[ixs[0]];
0165     // sum energy, take time from the most energetic hit
0166     for (unsigned long i : ixs) {
0167       auto hit = (*simhits)[i];
0168 
0169       double timeC = std::numeric_limits<double>::max();
0170       for (const auto& c : hit.getContributions()) {
0171         if (c.getTime() <= timeC) {
0172           timeC = c.getTime();
0173         }
0174       }
0175       if (timeC > m_cfg.capTime) {
0176         continue;
0177       }
0178       edep += hit.getEnergy();
0179       trace("adding {} \t total: {}", hit.getEnergy(), edep);
0180 
0181       // change maximum hit energy & time if necessary
0182       if (hit.getEnergy() > max_edep) {
0183         max_edep    = hit.getEnergy();
0184         leading_hit = hit;
0185         if (timeC <= time) {
0186           time = timeC;
0187         }
0188       }
0189 
0190       edm4eic::MutableMCRecoCalorimeterHitAssociation assoc;
0191       assoc.setRawHit(rawhit);
0192       assoc.setSimHit(hit);
0193       assoc.setWeight(hit.getEnergy());
0194       rawassocs_staging.push_back(assoc);
0195     }
0196     if (time > m_cfg.capTime) {
0197       continue;
0198     }
0199 
0200     // safety check
0201     const double eResRel =
0202         (edep > m_cfg.threshold)
0203             ? m_gaussian(m_generator) *
0204                   std::sqrt(std::pow(m_cfg.eRes[0] / std::sqrt(edep), 2) +
0205                             std::pow(m_cfg.eRes[1], 2) + std::pow(m_cfg.eRes[2] / (edep), 2))
0206             : 0;
0207 
0208     double corrMeanScale_value = corrMeanScale(leading_hit);
0209 
0210     double ped = m_cfg.pedMeanADC + m_gaussian(m_generator) * m_cfg.pedSigmaADC;
0211 
0212     // Note: both adc and tdc values must be positive numbers to avoid integer wraparound
0213     unsigned long long adc;
0214     unsigned long long tdc = std::llround((time + m_gaussian(m_generator) * tRes) * stepTDC);
0215 
0216     if (readoutType == kSimpleReadout) {
0217       adc = std::max(std::llround(ped + edep * corrMeanScale_value * (1.0 + eResRel) /
0218                                             m_cfg.dyRangeADC * m_cfg.capADC),
0219                      0LL);
0220     } else if (readoutType == kPoissonPhotonReadout) {
0221       const long long int n_photons_mean =
0222           edep * m_cfg.lightYield * m_cfg.photonDetectionEfficiency;
0223       std::poisson_distribution<> n_photons_detected_dist(n_photons_mean);
0224       const long long int n_photons_detected = n_photons_detected_dist(m_generator);
0225       const long long int n_max_photons =
0226           m_cfg.dyRangeADC * m_cfg.lightYield * m_cfg.photonDetectionEfficiency;
0227       trace("n_photons_detected {}", n_photons_detected);
0228       adc = std::max(std::llround(ped + n_photons_detected * corrMeanScale_value * (1.0 + eResRel) /
0229                                             n_max_photons * m_cfg.capADC),
0230                      0LL);
0231     } else if (readoutType == kSipmReadout) {
0232       const long long int n_photons = edep * m_cfg.lightYield;
0233       std::binomial_distribution<> n_photons_detected_dist(n_photons,
0234                                                            m_cfg.photonDetectionEfficiency);
0235       const long long int n_photons_detected = n_photons_detected_dist(m_generator);
0236       const long long int n_pixels_fired =
0237           m_cfg.numEffectiveSipmPixels *
0238           (1 - exp(-n_photons_detected / (double)m_cfg.numEffectiveSipmPixels));
0239       const long long int n_max_photons =
0240           m_cfg.dyRangeADC * m_cfg.lightYield * m_cfg.photonDetectionEfficiency;
0241       trace("n_photons_detected {}, n_pixels_fired {}, n_max_photons {}", n_photons_detected,
0242             n_pixels_fired, n_max_photons);
0243       adc = std::max(std::llround(ped + n_pixels_fired * corrMeanScale_value * (1.0 + eResRel) /
0244                                             n_max_photons * m_cfg.capADC),
0245                      0LL);
0246     }
0247 
0248     if (edep > 1.e-3)
0249       trace("E sim {} \t adc: {} \t time: {}\t maxtime: {} \t tdc: {} \t corrMeanScale: {}", edep,
0250             adc, time, m_cfg.capTime, tdc, corrMeanScale_value);
0251 
0252     rawhit.setCellID(leading_hit.getCellID());
0253     rawhit.setAmplitude(adc > m_cfg.capADC ? m_cfg.capADC : adc);
0254     rawhit.setTimeStamp(tdc);
0255     rawhits->push_back(rawhit);
0256 
0257     for (auto& assoc : rawassocs_staging) {
0258       assoc.setWeight(assoc.getWeight() / edep);
0259       rawassocs->push_back(assoc);
0260     }
0261   }
0262 }
0263 
0264 } // namespace eicrecon