File indexing completed on 2025-04-04 08:02:11
0001
0002
0003
0004 #include "CalorimeterClusterShape.h"
0005
0006 #include <boost/algorithm/string/join.hpp>
0007 #include <boost/iterator/iterator_facade.hpp>
0008 #include <boost/range/adaptor/map.hpp>
0009 #include <edm4hep/Vector3f.h>
0010 #include <edm4hep/utils/vector_utils.h>
0011 #include <Eigen/Core>
0012 #include <Eigen/Eigenvalues>
0013 #include <Eigen/Householder>
0014 #include <cmath>
0015
0016 namespace eicrecon {
0017
0018 void CalorimeterClusterShape::init() {
0019
0020
0021 std::string ew = m_cfg.energyWeight;
0022
0023
0024 std::transform(ew.begin(), ew.end(), ew.begin(), [](char s) { return std::tolower(s); });
0025 auto it = m_weightMethods.find(ew);
0026 if (it == m_weightMethods.end()) {
0027 error(
0028 "Cannot find energy weighting method {}, choose one from [{}]",
0029 m_cfg.energyWeight,
0030 boost::algorithm::join(m_weightMethods | boost::adaptors::map_keys, ", ")
0031 );
0032 } else {
0033 m_weightFunc = it->second;
0034 }
0035
0036 }
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049 void CalorimeterClusterShape::process(
0050 const CalorimeterClusterShape::Input& input,
0051 const CalorimeterClusterShape::Output& output
0052 ) const {
0053
0054
0055 const auto [in_clusters, in_associations] = input;
0056 auto [out_clusters, out_associations] = output;
0057
0058
0059 if (in_clusters->size() == 0) {
0060 debug("No clusters in input collection.");
0061 return;
0062 }
0063
0064
0065 for (const auto& in_clust : *in_clusters) {
0066
0067
0068 edm4eic::MutableCluster out_clust = in_clust.clone();
0069
0070
0071 double logWeightBase=m_cfg.logWeightBase;
0072 if (m_cfg.logWeightBaseCoeffs.size() != 0){
0073 double l=log(out_clust.getEnergy()/m_cfg.logWeightBase_Eref);
0074 logWeightBase=0;
0075 for(std::size_t i =0; i<m_cfg.logWeightBaseCoeffs.size(); i++){
0076 logWeightBase += m_cfg.logWeightBaseCoeffs[i]*pow(l,i);
0077 }
0078 }
0079
0080
0081
0082
0083 {
0084
0085
0086 float radius = 0, dispersion = 0, w_sum = 0;
0087
0088
0089 Eigen::Matrix2f sum2_2D = Eigen::Matrix2f::Zero();
0090 Eigen::Matrix3f sum2_3D = Eigen::Matrix3f::Zero();
0091 Eigen::Vector2f sum1_2D = Eigen::Vector2f::Zero();
0092 Eigen::Vector3f sum1_3D = Eigen::Vector3f::Zero();
0093 Eigen::Vector2cf eigenValues_2D = Eigen::Vector2cf::Zero();
0094 Eigen::Vector3cf eigenValues_3D = Eigen::Vector3cf::Zero();
0095
0096
0097 edm4hep::Vector3f axis;
0098 if (out_clust.getNhits() > 1) {
0099 for (std::size_t iHit = 0; const auto& hit : out_clust.getHits()) {
0100
0101
0102 const double eTotal = out_clust.getEnergy() * m_cfg.sampFrac;
0103 const float w = m_weightFunc(hit.getEnergy(), eTotal, logWeightBase, 0);
0104
0105
0106 Eigen::Vector2f pos2D( edm4hep::utils::anglePolar( hit.getPosition() ), edm4hep::utils::angleAzimuthal( hit.getPosition() ) );
0107
0108 Eigen::Vector3f pos3D( hit.getPosition().x, hit.getPosition().y, hit.getPosition().z );
0109
0110 const auto delta = out_clust.getPosition() - hit.getPosition();
0111 radius += delta * delta;
0112 dispersion += delta * delta * w;
0113
0114
0115 sum2_2D += w * pos2D * pos2D.transpose();
0116 sum2_3D += w * pos3D * pos3D.transpose();
0117
0118
0119 sum1_2D += w * pos2D;
0120 sum1_3D += w * pos3D;
0121
0122 w_sum += w;
0123 ++iHit;
0124 }
0125
0126 radius = sqrt((1. / (out_clust.getNhits() - 1.)) * radius);
0127 if( w_sum > 0 ) {
0128 dispersion = sqrt( dispersion / w_sum );
0129
0130
0131 sum2_2D /= w_sum;
0132 sum2_3D /= w_sum;
0133 sum1_2D /= w_sum;
0134 sum1_3D /= w_sum;
0135
0136
0137 Eigen::Matrix2f cov2 = sum2_2D - sum1_2D * sum1_2D.transpose();
0138 Eigen::Matrix3f cov3 = sum2_3D - sum1_3D * sum1_3D.transpose();
0139
0140
0141 Eigen::EigenSolver<Eigen::Matrix2f> es_2D(cov2, false);
0142 Eigen::EigenSolver<Eigen::Matrix3f> es_3D(cov3, true);
0143
0144
0145 eigenValues_2D = es_2D.eigenvalues();
0146 eigenValues_3D = es_3D.eigenvalues();
0147
0148 auto eigenvectors= es_3D.eigenvectors();
0149 auto max_eigenvalue_it = std::max_element(
0150 eigenValues_3D.begin(),
0151 eigenValues_3D.end(),
0152 [](auto a, auto b) {
0153 return std::real(a) < std::real(b);
0154 }
0155 );
0156 auto axis_eigen = eigenvectors.col(std::distance(
0157 eigenValues_3D.begin(),
0158 max_eigenvalue_it
0159 ));
0160 axis = {
0161 axis_eigen(0,0).real(),
0162 axis_eigen(1,0).real(),
0163 axis_eigen(2,0).real(),
0164 };
0165 }
0166 }
0167
0168
0169 out_clust.addToShapeParameters( radius );
0170 out_clust.addToShapeParameters( dispersion );
0171 out_clust.addToShapeParameters( eigenValues_2D[0].real() );
0172 out_clust.addToShapeParameters( eigenValues_2D[1].real() );
0173 out_clust.addToShapeParameters( eigenValues_3D[0].real() );
0174 out_clust.addToShapeParameters( eigenValues_3D[1].real() );
0175 out_clust.addToShapeParameters( eigenValues_3D[2].real() );
0176
0177
0178 double dot_product = out_clust.getPosition() * axis;
0179 if (dot_product < 0) {
0180 axis = -1 * axis;
0181 }
0182
0183
0184 if (m_cfg.longitudinalShowerInfoAvailable) {
0185 out_clust.setIntrinsicTheta( edm4hep::utils::anglePolar(axis) );
0186 out_clust.setIntrinsicPhi( edm4hep::utils::angleAzimuthal(axis) );
0187
0188 } else {
0189 out_clust.setIntrinsicTheta(NAN);
0190 out_clust.setIntrinsicPhi(NAN);
0191 }
0192 }
0193
0194 out_clusters->push_back(out_clust);
0195 trace("Completed shape calculation for cluster {}", in_clust.getObjectID().index);
0196
0197
0198
0199
0200 for (auto in_assoc : *in_associations) {
0201 if (in_assoc.getRec() == in_clust) {
0202 auto mc_par = in_assoc.getSim();
0203 auto out_assoc = out_associations->create();
0204 out_assoc.setRecID( out_clust.getObjectID().index );
0205 out_assoc.setSimID( mc_par.getObjectID().index );
0206 out_assoc.setRec( out_clust );
0207 out_assoc.setSim( mc_par );
0208 out_assoc.setWeight( in_assoc.getWeight() );
0209 }
0210 }
0211 }
0212 debug("Completed processing input clusters");
0213
0214 }
0215
0216 }